224 research outputs found

    Diffusive Dynamics of the Reaction Coordinate for Protein Folding Funnels

    Full text link
    The quantitative description of model protein folding kinetics using a diffusive collective reaction coordinate is examined. Direct folding kinetics, diffusional coefficients and free energy profiles are determined from Monte Carlo simulations of a 27-mer, 3 letter code lattice model, which corresponds roughly to a small helical protein. Analytic folding calculations, using simple diffusive rate theory, agree extremely well with the full simulation results. Folding in this system is best seen as a diffusive, funnel-like process.Comment: LaTeX 12 pages, figures include

    A New Monte Carlo Algorithm for Protein Folding

    Get PDF
    We demonstrate that the recently proposed pruned-enriched Rosenbluth method (P. Grassberger, Phys. Rev. E 56 (1997) 3682) leads to extremely efficient algorithms for the folding of simple model proteins. We test them on several models for lattice heteropolymers, and compare to published Monte Carlo studies. In all cases our algorithms are faster than all previous ones, and in several cases we find new minimal energy states. In addition to ground states, our algorithms give estimates for the partition sum at finite temperatures.Comment: 4 pages, Latex incl. 3 eps-figs., submitted to Phys. Rev. Lett., revised version with changes in the tex

    Statics, metastable states and barriers in protein folding: A replica variational approach

    Full text link
    Protein folding is analyzed using a replica variational formalism to investigate some free energy landscape characteristics relevant for dynamics. A random contact interaction model that satisfies the minimum frustration principle is used to describe the coil-globule transition (characterized by T_CG), glass transitions (by T_A and T_K) and folding transition (by T_F). Trapping on the free energy landscape is characterized by two characteristic temperatures, one dynamic, T_A the other static, T_K (T_A> T_K), which are similar to those found in mean field theories of the Potts glass. 1)Above T_A, the free energy landscape is monotonous and polymer is melted both dynamically and statically. 2)Between T_A and T_K, the melted phase is still dominant thermodynamically, but frozen metastable states, exponentially large in number, appear. 3)A few lowest minima become thermodynamically dominant below T_K, where the polymer is totally frozen. In the temperature range between T_A and T_K, barriers between metastable states are shown to grow with decreasing temperature suggesting super-Arrhenius behavior in a sufficiently large system. Due to evolutionary constraints on fast folding, the folding temperature T_F is expected to be higher than T_K, but may or may not be higher than T_A. Diverse scenarios of the folding kinetics are discussed based on phase diagrams that take into account the dynamical transition, as well as the static ones.Comment: 41 pages, LaTeX, 9 EPS figure

    Viscosity Dependence of the Folding Rates of Proteins

    Full text link
    The viscosity dependence of the folding rates for four sequences (the native state of three sequences is a beta-sheet, while the fourth forms an alpha-helix) is calculated for off-lattice models of proteins. Assuming that the dynamics is given by the Langevin equation we show that the folding rates increase linearly at low viscosities \eta, decrease as 1/\eta at large \eta and have a maximum at intermediate values. The Kramers theory of barrier crossing provides a quantitative fit of the numerical results. By mapping the simulation results to real proteins we estimate that for optimized sequences the time scale for forming a four turn \alpha-helix topology is about 500 nanoseconds, whereas the time scale for forming a beta-sheet topology is about 10 microseconds.Comment: 14 pages, Latex, 3 figures. One figure is also available at http://www.glue.umd.edu/~klimov/seq_I_H.html, to be published in Physical Review Letter

    Reply to Comment on "Criterion that Determines the Foldability of Proteins"

    Full text link
    We point out that the correlation between folding times and σ=(TθTf)/Tθ\sigma = (T_{\theta } - T_{f})/T_{\theta } in protein-like heteropolymer models where TθT_{\theta } and TfT_{f} are the collapse and folding transition temperatures was already established in 1993 before the other presumed equivalent criterion (folding times correlating with TfT_{f} alone) was suggested. We argue that the folding times for these models show no useful correlation with the energy gap even if restricted to the ensemble of compact structures as suggested by Karplus and Shakhnovich (cond-mat/9606037).Comment: 6 pages, Latex, 2 Postscript figures. Plots explicitly showing the lack of correlation between folding time and energy gap are adde

    Folding in two-dimenensional off-lattice models of proteins

    Full text link
    Model off-lattice sequences in two dimensions are constructed so that their native states are close to an on-lattice target. The Hamiltonian involves the Lennard-Jones and harmonic interactions. The native states of these sequences are determined with a high degree of certainty through Monte Carlo processes. The sequences are characterized thermodynamically and kinetically. It is shown that the rank-ordering-based scheme of the assignment of contact energies typically fails in off-lattice models even though it generates high stability of on-lattice sequences. Similar to the on-lattice case, Go-like modeling, in which the interaction potentials are restricted to the native contacts in a target shape, gives rise to good folding properties. Involving other contacts deteriorates these properties.Comment: REVTeX, 9 pages, 8 EPS figure

    Modeling study on the validity of a possibly simplified representation of proteins

    Get PDF
    The folding characteristics of sequences reduced with a possibly simplified representation of five types of residues are shown to be similar to their original ones with the natural set of residues (20 types or 20 letters). The reduced sequences have a good foldability and fold to the same native structure of their optimized original ones. A large ground state gap for the native structure shows the thermodynamic stability of the reduced sequences. The general validity of such a five-letter reduction is further studied via the correlation between the reduced sequences and the original ones. As a comparison, a reduction with two letters is found not to reproduce the native structure of the original sequences due to its homopolymeric features.Comment: 6 pages with 4 figure

    Scaling of folding properties in simple models of proteins

    Full text link
    Scaling of folding properties of proteins is studied in a toy system -- the lattice Go model with various two- and three- dimensional geometries of the maximally compact native states. Characteristic folding times grow as power laws with the system size. The corresponding exponents are not universal. Scaling of the thermodynamic stability also indicates size-related deterioration of the folding properties.Comment: REVTeX, 4 pages, 4 EPS figures, PRL (in press

    Coarse grained description of the protein folding

    Full text link
    We consider two- and three-dimensional lattice models of proteins which were characterized previously. We coarse grain their folding dynamics by reducing it to transitions between effective states. We consider two methods of selection of the effective states. The first method is based on the steepest descent mapping of states to underlying local energy minima and the other involves an additional projection to maximally compact conformations. Both methods generate connectivity patterns that allow to distinguish between the good and bad folders. Connectivity graphs corresponding to the folding funnel have few loops and are thus tree-like. The Arrhenius law for the median folding time of a 16-monomer sequence is established and the corresponding barrier is related to easily identifiable kinetic trap states.Comment: REVTeX, 9 pages, 15 EPS figures, to appear in Phys. Rev.
    corecore